Hardware/Software Partitioning of Coarse-Grained

Reconfigurable System Using Evolutionary Ant Colony
Optimization

Dawei Wang, Yafei Cao, Sikun Li

College of Computer Science, University of Defen

' 410073 Changsha, P.R.China
daweiwang@nudt.edu.cn, yfcao@nudt.edu. cn,

ce Technology,

lisikun@263.net.cn

Abstract. We present a hardware/software partitioning approach for coarse-
grained reconfigurable SoC design using an evolutionary Ant Colony Optimiza-
tion with Geqetic Algorithm, namely eACOGA. The architecture of reconfigur-
able SoC mainly consists of micro-processor, dynamic reconfigurable process
element array and memories. We build an automatic configuration and optimi-

zation framework for coarse-grained reconfigurable SoC desi
ion f ' gn, the kernel of
which is eACOGA algorithm. eACOGA uses genetic algorithm to evolve the

parameters of ant colony optimization, and makes use of such advantages as
positive feedback and efficient convergence of ant colony optimization to

search for optimal partitioning solutions. It utilizes the advantages of both ant
colony optimization and genetic algorithm, which avoids dropping into local
optimization solutions. Experiments show eACOGA improves the quality and
efficiency of coarse-grained reconfigurable SoC hardware/software partitioning.

1 Introduction

Due to its potential to greatly accelerate a wide variety of applications, reconfigurable
computing has become a subject of a great deal of research [1] [2]. Coarse-grained
reconfigurable architectures can achieve more speedup and power saving than fine-
grained reconfigurable architectures, while cost more design efforts. With more and
more coarse-grained reconfigurable architectures have been proposed [3-5], the new
SoC architectures patterns like “RISC + reconfigurable arrays” bring new challenges
on existing SoC design methodology and tools.

Hardware/software partitioning is the key problem of coarse-grained reconfigurable
SoC design. Its main task is to map tasks to hardware/software architectures for the
high performance of SoC System. Recently, most research efforts use heuristic algo-
rithms for hardware/software partitioning. These algorithms use heuristic information
to guide the search process for converging to the optimal solutions step by step, so
that they have the capability of handling the delay/area/power consumption trade-off.

In this paper we describe a new hardware/software partitioning approach for
coarse-grained reconfigurable SoC using ant colony optimization. We have developed
a framework for the automatic configuration and optimization of hardware/software

© A. Gelbukh, A. Kuri (Eds.) Received 13/06/07
Advances in Artificial Intelligence and Applications . Accepfed 31/08/07
Research in Computer Science 32, 2007, pp. 45-55 Final version 20/09/07

46 Dawei Wang, Yafei Cao, Sikun Li

partitioning. A key component of this framework is an evolutionary ant colony opti-
mization algorithm for hardware/software partitioning. Experimental results show that

our algorithm is effective in finding close to optimal solutions.
The rest of the paper is organized into 6 sections. Section 2 overviews the previous

work. Section 3 shortly introduces problem definition for coarse-grained reconfigur-
able SoC partitioning. In section 4 we present the ant colony optimization algorithm
for coarse-grained reconfigurable SoC and integrate it into an automatic reconfigur-

able partitioning flow. In section 5, we apply our algorithm to some typical SoC appli-
cations and give the obtained results. Finally. in section 6 we present the conclusions.

2 Related Work

There are a great number of approaches to HW/SW co-design of SoC systems. which
use different techniques for partitioning. A hybrid genetic algorithm is presented for
constrained hardware-software partitioning [6]. Given a high-level program and an
area constraint, it considers different granularities to discover the most interesting
blocks to be implemented in ad hoc functional units. G.Wang uses ant colony optimi-
zation algorithm. in which intelligent ants can cooperatively search for the global best
optimal solutions using both heuristic information and pheromone information [7].

There are many approaches to HW/SW partitioning of fine-grained reconfigurable
SoC. A new automated compile-time partitioning and scheduling algorithm is pro-
posed in [8], in which three meta-heuristic algorithms, namely genetic algorithm,
simulated annealing. and tabu search, are compared. Simple heuristics are presented to
partition the real-time applications at task level for scheduling between CPU and
FPGA so that they meet the deadline constraints for a given total system power [9].
This fast partitioning mechanism would enable dynamic reconfiguration of systems for
power and performance tuning.

However, there are not many research efforts on the partitioning of coarse-grained
reconfigurable SoC systems. A hyper graph covering algorithm is proposed to trans-
late high level C program into hyper graph and use the clustering and allocation algo-
rithm for mapping high level application on coarse-grained reconfigurable architecture
[10]. While our approach makes use of ACO (Ant Colony Optimization), which is a
cooperative heuristic searching algorithm by the observation on the behavior of ants,
and we evolve the parameters of ACO with GA (Genetic Algorithm) to avoid the
stagnancy of search.

3 Hw/Sw Partitioning of Coarse-grained Reconfigurable SOC

3.1 Problem Formulation for Reconfigurable SoC Partitioning

Usuallv, we use TG (Task Graph) to describe the behaviors of SoC system, rAG (re-
configurable Architecture Graph) to describe the architectures of reconfigurable SoC

Hardware/Software Partitioning of Coarse-Grained Reconfigurable System... 47

system, and the mapping from TG to rAG to describe hardware/software partitioning
of reconfigurable SoC [1 1].

: Qeﬁnition 1 (TG) A task graph TG = (T, E, C, P) consists of a set of nodes T, a set
of d!rected edges E ¢ (TxT), the configuration of nodes C. and a set of node ports P.

The nodes T represents the tasks of SoC system. and the edges E represents con-
trol/data flow of tasks’ communication.

Dgﬁnition 2 (rAG) A reconfigurable architecture graph rAG = (¢, ", " RN)
consists of microprocessor computation resources C'. reconfigurable computation
resources (', memories C*, and route networks RN.

Definition 3 (k way partition) Given a set of modules M = {m,m-,....m,}. akway

nl -

partition problem is to find a set of clusters P = {p1.p> ..o} . Which meets:

peM, 1<i<k

k

Up =m (1)
=1

p\p, = . I<i,j<hk,i#j

In the problem of reconfigurable SoC hardware/software partitioning, M presents
TG, and P presents rAG. Generally, the performance objects of hardware/software
partitioning are various due to the complexity of application field. In this paper. we
assume the performance object is to minimize the weighted cost sum of running time
and area of all the tasks. In this way, we define the objective function as follows:

Objective Cost Function = Z w, *time(i)+ w, * area(i):

In above formulation, w; presents weight for time. w, presents weight for area,
time(i) presents time cost of task i, and area(i) presents area cost of task i. A typical
partitioning for coarse-grained reconfigurable SoC is shown in figure 1.

cRAG:

e]

Route Network

Mapping:
\A! C \ &

T1 | Processor T35 PEs A=(8,, &)}

T2 PEs T6 | Processor o' ={(12, §,), (13, 8),
T3 PES ml LM (T4, 52)' (TS, 62)]

T4l PEs m2| 1M ¥ =((8.PEs), (8, PEs)]

Fig. 1. Problem formulation for reconfigurable SoC partition

We use DAG (Directed Acyclic Graph) based bi-coloring model to describe the
problem of hardware/software partitioning. Figure 2 shows that tasks mapping to
microprocessor are rendered by color cl, and tasks mapping to PEs are rendered by
color ¢2. The work of ants is to find the best coloring of all tasks that minimizing the
cost of partitioning. eACOGA algorithm uses dynamic combination of ant colony
optimization and genetic algorithm to optimize the search for the best coloring.

48 Dawei Wang, Yafei Cao. Sikun Li
~~~~~~ > MP implement, ¢,
—=>PEs implement, c;

A
RS,

to D-.
/‘\‘/\/

Fig. 2. Direct acyclic graph based bi-coloring model. The DAG consists of tasks nodes and
their edges. All the edges are colored by two color, ¢, and c,, which indicates mapping the tasks

onto microprocessor (MP) or PEs.

3.2 Target Architecture for Reconfigurable Partitioning

We deal with reconfigurable SoC hardware/software partition by two main steps:
mapping tasks to microprocessor or reconfigurable array, and partial partitioning for

the tasks mapping on reconfigurable arrays.
To meet the needs of various applications, many reconfigurable architectures have

been proposed, which have different details of design implementation, such as the
topology of reconfigurable array, communication protocol, and the strategy of recon-
figuration. To facilitate the research of reconfigurable partition problem, we abstract
reconfigurable architecture and take it as the target architecture for partitioning. We
desigtn a RAAM (Reconfigurable Architecture Abstract Model) for the hard-
ware/software partitioning of coarse-grained reconfigurable Systems [12]. RAAM has
many configurable parameters, so it can support most kinds of reconfigurable archi-
tectures.

4= 1-Cache ]
ARISE

Micro-processor S—
"‘"' RAM

Conirol
(PEs }4 Route [em i

fig.
™ PEs m,‘g

Orcmn @ (e

Fig. 3. Rccgnﬁgurablc architecture abstract model for hardware/software partitioning. (a) task
graph descn'bes the: function and behavior of reconfigurable system; (b) reconfigurable archi-
lecture consists mainly of microprocessor and coarse-grained reconfigurable PEs array.

Figure 3(a) shows the task graph that describes the function and behavior of recon-
figurable systems. There are three types of task nodes: computing task, storage seg-



Hardware/Software Partitioning of Coarse-Grained Reconfigurable System... 49

ment and communication task. The task nodes are connected by dependencies or
channels. Figure 3(b) shows the reconfigurable architecture that consists of micro-
processor and reconfigurable array. The microprocessor uses 32-bit RISC instruction
set and some enhanced instructions for special propose processing. Reconfigurable
array consists of PEs (Process Elements), route network, LM (Local Memory), con-
figurable logic and control logic, etc. PEs array based reconfigurable architectures are

popular because of their advantage of high performance, low power and good flexibil-
ity for embedded system applications.

4 Ant Colony Optimization For Coarse-Grained Reconfigurable
SoC Partitioning

4.1 eACOGA Algorithm

ACO algorithm can find better solutions of partitioning more effectively [13]. But the
strategy of random selection in constructing solutions lead to slow convergence speed.
Furthermore, the principle of positive feedback can not only strengthen the solutions
with better performance, but also bring on the stagnancy of search. The causation is
that the main configurable parameters of the algorithm, such as «, B, p, Q, are set to
fixed value when initializing, and it has no adaptability to various applications.

Based on existing basic ACO algorithm ([7]), we present an eACOGA approach of
hardware/software partitioning for reconfigurable SoC. GA can evolve the configura-
tion parameters of ACO algorithm by cross operation and variation operation ([9]). So
eACOGA can evolve and optimize itself to search global optimal solutions.

We define the rules of eACOGA as follows:

Objective Function and Fitness Function: We define objective function as Spes; =
arg min C,, fitness function as Fitness (p) = 1/C,. Where, G, figures the cost of parti-
tion p.

Configure RAAM: According to the need of specific applications, design experts
configure the task graph and reconfigurable architecture. In this step, the parameters
of the tasks and architectures should be decided.

Strategy of Render to DAG: For any nodes except t,, ants try to render the color
of t;, the subsequence of t;. Ants achieve the work according to the global heuristic
information (t;;(k)) of edge e;; and the local heuristic information (nj(k)) of node t;. The
ants on node t; will render the color of node t; as c at the probability of:

7, (k) n, (k)
I i)

Where, (k) is the pheromone on edge ej;, a and B is the factor of them and n(k) is
defined as follows:

n,k)=1/((w* time,(k))+ (w, * area,(k))) 3)

p, (k)= @)



50 Dawei Wang. Yafei Cao, Sthun Li

Use Genetic Algorithm to Evolve Parameters: We use genetic algorithm to
evolve the parameters of ant colony optimization, such as a. B. p, Q. First, Configure
the probability factor of cross and variation operation according to the size of popula-

tion and the generation of evolution. Then by taking a, B. p. Q as the variable of fit-
ness function, the best optimal partition cost as fitness function and the course of ACO

as the individual. we optimize a. B. p, Q repeatedly until finding the best optimal solu-

tions.
Pheromone Setting and Refreshing: We adopt MMAS (Max-Min Ant System)

introduced by Thomas Stuzle ([ 14]). the refreshing equation of pheromone is:
(l —_p)*r,,(k)*'Aru(k)hc\'l )
‘!'”(k)= Tt/(k)nw(’ifrll(k)> rll(k)mu (4)
T:/ (k )mm‘ if rl/(k) < TI[ (k)mm
Where. p is the evaporation ratio of pheromone, T,(K)max (Ti(K)min) is maximum
ngth of o pheromone on edge ej, and ATi(Khest is increment of ¢,

done by the "best ant" in current ant system algorithm iteration.
s defined as:

(minimum) stre

pheromone on edge ¢j !
According to Ant-Cycle Model, Arij(k)‘,es, i

_Joic, .inpy,e,is rendered by c,

At (k) = 0, otherwise )

//Input’ the configuration of RAAM and DAGs .
/Outputs: the best optimal solutions for partition

£Q. a. p. p 1s the mamn parameters of ACO
partition StartSearch().

1 Main(){ 25
) Generation =0, 26 population[imem].fitness = CostFunction_to _Fitness:
3 Imtialize(): 27 )

4 Evaluat):

S Keep_the_Best(): 28 ACO: GetAny(){

6  foreach gencration 30  Randomly put ant into DAGs;

7 31 for (i = 0:i -~ nAntCount; i++)

8 select(): 32 {

9 crossover(). 3 task = md( nTaskCount):

10 mutate( ). M ants[1). AddTaskIntoTabu(task).

" report(). 35 )

12 Evaluate(). 36 )

13 chiust().

4 ) 37 ACO: StantSearch()!

IS Qutput the best titness values. 38  foreach ant

16 } 39 {

\
40 Select_NextNode_Accordingto_heunistic_ Information():
17 Evaluate)! 41 Moveto_NextNode(): )
18 for(nem - 0. mem - POPSIZE: mem++) 42 Update Tabu_Table():

19 ! 43 find out the best solution of the step and put it into temp:
20 for(r 0.i NVARS.1-+) “ .
20 x[i-1] - populanonmem).geneli). 45 Update_Trail():

2 Q- lLu=x2.p=x[H).p=s[4). 46  Find_theBest Solutions_Of_Partition().

23 ACO parution = new ACO:. 17 )

24 panitnon GetAny).

Fig. 4. Pseudo-code for eACOGA algorithm



Hardware/Software Partitioning of Coarse-Grained Reconfigurable System... 51

The pseudo-code for cACOGA algorithm is shown in Figure 4. First, the configura-
tions of RAAM and DAGs are input, and after the execution of eACOGA algorithm
the best optimal solutions for partition are output. In eACOGA, ACO is built as a
class. which has two main functions: GetAnt() and StartSearch(), as shown in Line 23-
25. GA randomly encodes the variables of «. B. p. Q. as shown in Line 18-22. GA
cvolves.the Yariables continuously by the operation of select, crossover and mutate, as
shown in Line 6-14. In ACO, we put the ants randomly into DAGs and begin the
search for best optimal solutions, as shown in the function on Line 28-36 and Line 37-
47. After evaluating the fitness function values we output the best optimal solutions, as
shown on Line 12 and Line 15.

4.2 Automatic Partitioning Flow

We have designed an automatic partitioning flow for mapping applications on recon-
figurable SoC, as shown in Figure 5.

Begin
Automatic T ]
Partitioning |2 aton |...
.. .2 |Scheduler
Optimization
eACOGA =z
Design experts configure the Reconfiguable SoC
parameters of RAAM Prototype
Generation
Ant colony optimizing DAG for TA AR AR AES
searching the best solutions
Select || Single || Even Reoonﬁguablg SoC |
in Ratio || Cross || Variation Co-Simulation
Fitness Function Evaluate .7
Performance
T “ | Analysis and
——— ¢ Evaluation
Best Optimal | W
P ing R

Fig. 5. Automatic partitioning flow of reconfigurable SoC. It integrates eACOGA for partition-
ing configuration.

First, design experts configure the tasks and reconfigurable architecture of RAAM.
Then, application specific reconfigurable SoC prototype is generated according to
existing reconfigurable architecture templates. Finally, we run reconfigurable SoC
transaction level co-simulation and output the best optimal partitioning solutions.

The automatic partiti‘on'ing flow has two main advantages:

(1).For each individual of genetic population in e ACOGA, the flow of partition and
reconfigurable SoC co-simulation can run automatically. When some constraints can-
not be met, experts can request to stop the simulation.



52 Dawei Wang, Yafei Cao, Sikun Li

(2).Transaction level simulation in SystemC can describe various behaviors of re-
configurable SoC with faster speed and nicer accuracy. Architecture template en-
hances reuse of existing SoC design and achieves exploration speedup well.

5 Experimental Results

5.1 Target Architecture and Benchmarks

We use eACOGA algorithm for the partitioning of a reconfigurable SoC system,
which consists mainly of 32-bit RISC microprocessor called Estar and reconfigurable
arrays called LEAP, as shown in Figure 7 [15]. Both Estarand LEAP are developed
by our research group. We use Estar for common computing. It has 8KB instruction
cache and 8KB data cache, 266M Hz and 220mW of CPU core. Besides, we use
LEAP for reconfigurable computing. It can accelerate applications through loop self-
pipelining technique. LEAP steps loop iteration automatically and has the ability to
exploit parallelism at loop-level, instruction-level, and task-level.

The SoC system integrates some typical algorithms in the field of Software Defined
Radio, Synthetic Aperture Radar imaging and high-precision digital image en-
code/decode. We have designed some typical algorithms running on reconfigurable
systems, such as FFT (Fast Fourier Transformation), Sobel Edge Detection, Median
Filter, Matrix Multiply, FDCT (Forward Discrete Cosine Transform), IDCT (Inverse
Discrete Cosine Transform), etc. The application program analysis and pick up tool
can recognize these algorithms and generate them as the nodes of DAG, such as T1,
T2 in Figure 6. We also generate the attributes of these nodes, such as configuration
time, computing time, memory accessed, number of PEs used, and execution time on

embedded microprocessor etc.
( .

O —— L /ML\
e (R | — L R
&  REREEL . A
© (TZJ [3“ J b ol
o]
L Microprocessor PEs-1 PEs-2 ]

Fig. 6. A typical partitioning result of reconfigurable SoC. The task of T1 and T6 are mapped
onto microprocessor, and T2, T3, and T5 are mapped onto PEs.

We have tested the performance of these typical algorithms on Estar and LEAP and
translate execution time into time cost and resources used into area cost. In eACOGA
algorithm, we set w,= 1, w,= 10, ACO iteration counts = 100, GA population size = 5,
GA max generation = 50, GA cross probability factor = 0.8, and GA variation prob-
ability factor = 0.15. '



Hardware/Software Partitioning of Coarse-Grained Reconfigurable System...

53

Table 1. The performance of typical algorithms. Execution time of them on Estar and LEAP

are shown. cPE and mPE discribes the PE for computation and the PE for memory.

Execution Time

Typical 0 T Resources
1 ith star
Algorithms (Meyele) (Keycle) (cPE, mPE)
512 point FFT 32.320 6.721 10c4m
1024 point FFT 72.353 12.802 10c4m
Edge Detection
(320x240) 39.720 216.958 16¢7m
Edge Detection
(480x360) 87.898 474.205 16¢7m
Median Filter
(320x240) 1580.368 220.010 30c7m
Median Filter
(480x360) 3590.500 478.792 30c7m
Matrix Multiply
(64x64) 54.315 79.141 30c10m
Matrix Multiply
(128x128) 2522.258 318.901 30c10m
FDCT 2433.389 2838.905 30clOm
IDCT 2437.417 2839.044 30clOm

5.2 Result Analysis

We generate some test DAGs, the nodes of which consist of typical algorithms in
Table 1. We set the parameters region of a, B, p, Q respectively as [5, 1], [5, 1], [0.8,

0.2], [100, 40].

Cost FunctionX)

6000

ACO iteration counts(100)

Fig. 7. The evolution curve of eACOGA for partition. The convergence speed of 5th ACO is
. much faster than that of 1stand 4th.



54 Dawei Wang, Yatei Cao, Sikun Li

We achieve the object of hardware/software partitioning using eACOGA. as shown
in Figure 7. The total number of tasks is 10, and ant counts = 6. The global best opti-
mal solutions are 1862843, in which Q =70.540, a = 4.836, 3 = 3.580.p = 0.738. The
average value of Ist is 1918421, by evolution the average value of 4th is 1891026,
and that of Sth is 1890922.

To compare the quality of eACOGA with that of other researches we select ACO
algorithm in literature [8]. We set ACO parameters as: Q = 1000, a = .B=1land p =
0.8. Figure 8 show that eACOGA has better ability than ACO in searchlno for the
global best optimal solutions. The algorithm of ACO gets into local best optlmal solu-
tions (1905396). However. eACOGA can find the global best optimal solutions
(1862843) effectively for the advantage of self-adaptive optimization. Besides, an-
other algorithm we have researched. called initACO (ACO with init pheromone), has

the performance between them [16].

r+“ ACO —®—initACO '—‘—‘eACO%l

6000
[

5000

w £
oS o
(=S~
S o

Cost Function (K)

{ ] Sy S S5 )

0 e R T e 1T | o | A 1 TR

ACO iteration counts(100)

Fig. 8. Comparing eACOGA with ACO and initACO. It shows eACOGA can find optimal
solutions with fewer iteration counts.

6 Conclusions

ACO has been well proved to be suitable for fine-grained reconfigurable SoC parti-
tioning, but not mentioned for coarse-grained reconfigurable SoC. This paper pro-
poses a hardware/software partitioning approach of coarse-grained reconfigurable
system using eACOGA. A reconfigurable architecture abstract model is proposed as
the target architecture for the problem of reconfigurable hw/sw partitioning. We also
build an automatic configuration and optimization framework for mapping applica-
tions on reconfigurable SoC. By configuring parameters and running simulation we
can get global best optimal partitioning solutions. It can save the time of waiting for
manual simulation.

The algorithm of eACOGA can evolve the main control parameters (o, B. p, Q) of
ACO. so that it can find global best optimal solutions efficiently and rapidly. It over-
comes the disadvantage of ACO that be inclined to get into local best optimized solu-



Hardware/Software Partitioning of Coarse-Grained Reconfigurable System... 55

tions. Furthermore, the method combining ACO and GA that yields even better results
than using each of the algorithms individually.

References

1. Compton Katherine,Hauck Scott. Reconfigurable Computing: A Survey of Systems and
Software. ACM Computing Surveys, 2002. 34(2):171-210.
2. R. Hartenstein. “A Decade of Reconfigurable Computing: a. Visionary Retrospective,” In

Int'l Conf. on Design, Automa-. tion and Test in Europe (DATE'01), Munich. Germany..
March 12-15. 2001, 642-649.

3. Volker Baumgarten. G. Ehlers. F. May. Armin Niickel. Martin Vorbach. and Markus
Weinhardt: PACT XPP - A Selt-Reconfigurable Data Processing Architecture. The Journal
of Supercomputing, 2003, 26(2): 167-184.

4. H Singh, M Lee, G Lu, F J Kurdahi, N Bagherzadeh. E Filho, R Maestre. Morhposys: case
study of a reconfigurable computing system targeting multimedia applications. Proc. Design
Automation Conference (DAC'00), Los Angeles, California, 2000, 573-578.

5. J.R. Hauser. J. Wawrzynek. Garp: a MIPS processor with a reconfigurable coprocessor. Sth
IEEE Symposium on FPGA-Based Custom Computing Machines (FCCM '97). 1997, 12-21.

6. Pierre-Andre Mudry. Guillaume Zufferey, Gianluca Tempesti: A Hybrid Genetic Algorithm
for Constrained Hardware-Software Partitioning. Proceedings of the IEEE Workshop on
Design and Diagnostics of Electronic. Circuits and Systems, 2006, 3-8.

7. Gang Wang. Wenrui Gong and Ryan Kastner. "System Level Partitioning for Programmable
Platforms Using the Ant Colony Optimization”. In /3th International Workshop on Logic
and Synthesis (IWLS'04), 2004.

8. Theerayod Wianglong. Hardware Software Partitioning and Scheduling for Reconfigurable
Systems. Ph.D. thesis. University of London. UK, 2004,

9. Pramod K., S. Acharya. R. N. Mahapatra. “A Partitioning Algorithm for Power constrained
Reconfigurable Real-Time Systems™, Journal of Microprocessor and Microsystems. 2005.

10. Yuanging Guo. Gerard J. M. Smit, Hajo Broersma. Paul M. Heysters: A graph covering
algorithm for a coarse grain reconfigurable system. LCTES 2003, 199-208.

1. Michael H. Eisenring. Communication channel synthesis for heterogeneous embedded
systems. Ph.D. thesis. SWISS Federal institute of Technology ZURICH. No. 14640, 2002.

12. M. Kaul, V. Srinivasan, etal. "Partitioning and Synthesis for Run-Time Reconfigurable
Computers Using the SPARCS System", In Proceedings of the 1998 Military and Aero-
space Applications of Programmable Devices and Technologies Conference (MAPLD'98).
NASA Goddard Space Flight Center. Sept 15-16. 1998.

13. M Dorigo. V Maniezzo. and A Colorni. Ant System: Optimization by a Colony of Cooper-
ating Agents. [EEE Trans on Systems, Man and Cybernetics, Part-B. 1996, 26(1). 29~41.

14. T Stutzle. H H Hoos. et al. MAX-MIN Ant System. Future Generation Computer System.
2000. 16(8): 889~91.

15. Yong Dou. Xicheng Lu. "LEAP: A Data Driven Loop Engine on Array Processor™, The 4th
Int'l Conf on Purallel and Distributed Computing, Applications and Technologies
(PDCAT'03). 2003.

16. Xiong Zhihui . Li Sikun . Chen Jihua. “Hardware/Sofiware Partitioning Based on Ant
Optimization with Initial Pheromone™. Journal of Computer Research and Development.
2005. 42(12):2176-2183.



